# Fundamental Algorithm Analysis

Head Permutations Using a Linear Array of 5 Numbers
EXAMPLE_01 Output where N = 5
 Sequence Output Indexes Swapped 1 1 2 3 4 5 No Swap 2 2 1 3 4 5 swapped(0, 1) 3 3 1 2 4 5 swapped(0, 2) 4 1 3 2 4 5 swapped(0, 1) 5 2 3 1 4 5 swapped(0, 2) 6 3 2 1 4 5 swapped(0, 1) 7 3 2 4 1 5 swapped(2, 3) 8 2 3 4 1 5 swapped(0, 1) 9 4 3 2 1 5 swapped(0, 2) 10 3 4 2 1 5 swapped(0, 1) 11 2 4 3 1 5 swapped(0, 2) 12 4 2 3 1 5 swapped(0, 1) 13 4 1 3 2 5 swapped(1, 3) 14 1 4 3 2 5 swapped(0, 1) 15 3 4 1 2 5 swapped(0, 2) 16 4 3 1 2 5 swapped(0, 1) 17 1 3 4 2 5 swapped(0, 2) 18 3 1 4 2 5 swapped(0, 1) 19 2 1 4 3 5 swapped(0, 3) 20 1 2 4 3 5 swapped(0, 1) 21 4 2 1 3 5 swapped(0, 2) 22 2 4 1 3 5 swapped(0, 1) 23 1 4 2 3 5 swapped(0, 2) 24 4 1 2 3 5 swapped(0, 1) 25 5 1 2 3 4 swapped(0, 4) 26 1 5 2 3 4 swapped(0, 1) 27 2 5 1 3 4 swapped(0, 2) 28 5 2 1 3 4 swapped(0, 1) 29 1 2 5 3 4 swapped(0, 2) 30 2 1 5 3 4 swapped(0, 1) 31 2 1 3 5 4 swapped(2, 3) 32 1 2 3 5 4 swapped(0, 1) 33 3 2 1 5 4 swapped(0, 2) 34 2 3 1 5 4 swapped(0, 1) 35 1 3 2 5 4 swapped(0, 2) 36 3 1 2 5 4 swapped(0, 1) 37 3 5 2 1 4 swapped(1, 3) 38 5 3 2 1 4 swapped(0, 1) 39 2 3 5 1 4 swapped(0, 2) 40 3 2 5 1 4 swapped(0, 1) 41 5 2 3 1 4 swapped(0, 2) 42 2 5 3 1 4 swapped(0, 1) 43 1 5 3 2 4 swapped(0, 3) 44 5 1 3 2 4 swapped(0, 1) 45 3 1 5 2 4 swapped(0, 2) 46 1 3 5 2 4 swapped(0, 1) 47 5 3 1 2 4 swapped(0, 2) 48 3 5 1 2 4 swapped(0, 1) 49 4 5 1 2 3 swapped(0, 4) 50 5 4 1 2 3 swapped(0, 1) 51 1 4 5 2 3 swapped(0, 2) 52 4 1 5 2 3 swapped(0, 1) 53 5 1 4 2 3 swapped(0, 2) 54 1 5 4 2 3 swapped(0, 1) 55 1 5 2 4 3 swapped(2, 3) 56 5 1 2 4 3 swapped(0, 1) 57 2 1 5 4 3 swapped(0, 2) 58 1 2 5 4 3 swapped(0, 1) 59 5 2 1 4 3 swapped(0, 2) 60 2 5 1 4 3 swapped(0, 1) 61 2 4 1 5 3 swapped(1, 3) 62 4 2 1 5 3 swapped(0, 1) 63 1 2 4 5 3 swapped(0, 2) 64 2 1 4 5 3 swapped(0, 1) 65 4 1 2 5 3 swapped(0, 2) 66 1 4 2 5 3 swapped(0, 1) 67 5 4 2 1 3 swapped(0, 3) 68 4 5 2 1 3 swapped(0, 1) 69 2 5 4 1 3 swapped(0, 2) 70 5 2 4 1 3 swapped(0, 1) 71 4 2 5 1 3 swapped(0, 2) 72 2 4 5 1 3 swapped(0, 1) 73 3 4 5 1 2 swapped(0, 4) 74 4 3 5 1 2 swapped(0, 1) 75 5 3 4 1 2 swapped(0, 2) 76 3 5 4 1 2 swapped(0, 1) 77 4 5 3 1 2 swapped(0, 2) 78 5 4 3 1 2 swapped(0, 1) 79 5 4 1 3 2 swapped(2, 3) 80 4 5 1 3 2 swapped(0, 1) 81 1 5 4 3 2 swapped(0, 2) 82 5 1 4 3 2 swapped(0, 1) 83 4 1 5 3 2 swapped(0, 2) 84 1 4 5 3 2 swapped(0, 1) 85 1 3 5 4 2 swapped(1, 3) 86 3 1 5 4 2 swapped(0, 1) 87 5 1 3 4 2 swapped(0, 2) 88 1 5 3 4 2 swapped(0, 1) 89 3 5 1 4 2 swapped(0, 2) 90 5 3 1 4 2 swapped(0, 1) 91 4 3 1 5 2 swapped(0, 3) 92 3 4 1 5 2 swapped(0, 1) 93 1 4 3 5 2 swapped(0, 2) 94 4 1 3 5 2 swapped(0, 1) 95 3 1 4 5 2 swapped(0, 2) 96 1 3 4 5 2 swapped(0, 1) 97 2 3 4 5 1 swapped(0, 4) 98 3 2 4 5 1 swapped(0, 1) 99 4 2 3 5 1 swapped(0, 2) 100 2 4 3 5 1 swapped(0, 1) 101 3 4 2 5 1 swapped(0, 2) 102 4 3 2 5 1 swapped(0, 1) 103 4 3 5 2 1 swapped(2, 3) 104 3 4 5 2 1 swapped(0, 1) 105 5 4 3 2 1 swapped(0, 2) 106 4 5 3 2 1 swapped(0, 1) 107 3 5 4 2 1 swapped(0, 2) 108 5 3 4 2 1 swapped(0, 1) 109 5 2 4 3 1 swapped(1, 3) 110 2 5 4 3 1 swapped(0, 1) 111 4 5 2 3 1 swapped(0, 2) 112 5 4 2 3 1 swapped(0, 1) 113 2 4 5 3 1 swapped(0, 2) 114 4 2 5 3 1 swapped(0, 1) 115 3 2 5 4 1 swapped(0, 3) 116 2 3 5 4 1 swapped(0, 1) 117 5 3 2 4 1 swapped(0, 2) 118 3 5 2 4 1 swapped(0, 1) 119 2 5 3 4 1 swapped(0, 2) 120 5 2 3 4 1 swapped(0, 1)

[]

[] | [] | [] | [] | []
[] | []
[] | [] | []
[]