{menu}{mirror} |
|
EXAMPLE 04 - Permutation Reversals on the Tail of a Linear Array Without Using Recursion
// NOTICE: Copyright 1991-2010, Phillip Paul Fuchs
#define N 12
// number of elements to permute. Let N > 2void example_04(void) { const unsigned int ax = N - 1;
// constant index ceiling (a[N] length)unsigned int a[N], p[N];
// target array and index control arrayregister unsigned int i, j, tmp;
// index variables and tmp for swapfor(i = 0; i < N; i++)
// initialize arrays; a[N] can be any type{ a[i] = N - i;
// a[i] value is arbitrary and not revealedp[i] = N - i; }
//display(a); // remove comment to display array a[]i = ax;
// setup first swap point to be axwhile (i > 0) { p[i]--;
// decrease index "weight" for i by onei--;
// i must be less then j (i < j)j = ax;
// reset j to axdo
// reverse target array from i to j{ tmp = a[j];
// swap(a[i], a[j])a[j] = a[i]; a[i] = tmp; j--;
// decrement j by 1i++;
// increment i by 1} while (j > i);
//display(a); // remove comment to display target array a[]i = ax;
// reset index i to ax (assumed)while (!p[i])
// while (p[i] == 0){ p[i] = N - i;
// reset p[i] zero valuei--;
// set new index value for i (decrease by one)}
// while (!p[i])}
// while (i > 0)}
// example_04()
EXAMPLE 04a - Function to Display Permutations (Optional)
// NOTICE: Copyright 1991-2010, Phillip Paul Fuchs
void display(unsigned int *a) { for(unsigned int x = 0; x < N; x++) printf("%d ",a[x]); printf("\n"); getch();
// press any key to continue...}
// display()
Fundamental Analysis of Permutation Example 04 Above
Number of Objects
to Permute (N)a[N] Display of
Initial Sequencea[N] Display of
Final SequenceTotal Number of Unique
Combinations Produced (N!)3 3 2 1 1 2 3 2 * 3 = 6 4 4 3 2 1 1 2 3 4 6 * 4 = 24 5 5 4 3 2 1 1 2 3 4 5 24 * 5 = 120 6 6 5 4 3 2 1 1 2 3 4 5 6 120 * 6 = 720 7 7 6 5 4 3 2 1 1 2 3 4 5 6 7 720 * 7 = 5040 8 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 5040 * 8 = 40320 9 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 40320 * 9 = 362880 N N (N - 1) . . . 3 2 1 1 2 3 . . . (N - 1) N (N - 1)! * N = N!
The Meta-Permutation class supplies head and tail indices to EXAMPLE 05, which is next on our tour...